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Abstract—This technical note presents a relation between the number of
zero rows (rows with all zero elements) in the Routh array and the mul-
tiplicity of -axis poles. The main result of the technical note is that the
existence of more than one zero row in the Routh array amounts to insta-
bility of the system irrespective of any sign change in the first column.

Index Terms—Control systems, marginal stability, multiple poles on
-axis, Routh-Hurwitz criterion.

I. INTRODUCTION

The stability of feedback control systems is the primary concern of
the control system design. As it is well known, a linear time invariant
(LTI) system is stable if and only if the minimal polynomial of the
dynamics matrix has no roots in the right half plane (RHP) and no
multiple roots on the -axis. If the same conditions are verified by the
characteristic polynomial of the dynamics matrix, then stability holds.

Routh-Hurwitz criterion, which was independently developed by E.
J. Routh and A. Hurwitz in the late 19th century, is a simple but pow-
erful approach to determining the number of RHP roots of a polynomial
without computing those roots. Through using the coefficients of the
polynomial and by a simple calculation explained in Section II of this
technical note, an array is constructed. Then, the number of RHP roots
is obtained based on the number of sign changes in the first column of
the Routh array.

However, in determining stability, using the Routh-Hurwitz crite-
rion, one might face certain singularities. For instance, there might be
a case in which the first element of a row becomes zero. Several so-
lutions have been offered to this case in textbooks [1]–[4] and papers
[5]–[7]. In [5], the -method is proposed, and in [6], it is shown that this
method can be applied even to such cases in which all the elements of
a row go to zero as .

Another singularity that may rise in constructing the Routh array is
the case where all elements of a row become zero. It is suggested that
the coefficients of this row be replaced with those constructed by the
derivative of the auxiliary polynomial (the polynomial corresponding
to the row before the zero-row) [1]–[4], [8] so that the array will be
completed. The first conclusion that might be drawn in this case is that
the polynomial has symmetric roots with respect to the -axis [1], [7].
Once the array is completed, the location of the symmetric roots can be
determined. They might be on the right and left and/or on the -axis.

If the symmetric roots are on the -axis, the best conclusion one
can expect for the system is simple stability. However, no conclusion
can be drawn regarding system stability since there might be multiple
roots on the -axis, which is another source of instability.

Manuscript received November 07, 2010; revised August 19, 2011, February
22, 2012, and September 26, 2012; accepted October 11, 2012. Date of publi-
cation January 24, 2013; date of current version June 19, 2013. Recommended
by Associate Editor P. Pepe.

M. A. Choghadi was with Amirkabir University of Technology, Tehran
15875-4413 Iran (e-mail: m.amin.c@aut.ac.ir; aminchoghadi@yahoo.com).
He is now with the Department of Bioengineering, University of Tokyo,
Tokyo 113-8656, Japan (e-mail: aminchoghadi@gmail.com, amin@sophie.
q.t.u-tokyo.ac.jp).

H. A. Talebi is with the Department of Electrical Engineering, Amirkabir
University of Technology, Tehran 15875-4413, Iran (e-mail: alit@aut.ac.ir).

Digital Object Identifier 10.1109/TAC.2013.2242591

TABLE I
THE ROUTH-HURWITZ ARRAY

Determining system instability in the case of multiple roots on the
-axis is known to be the main drawback of the Routh-Hurwitz cri-

terion [2], [4], [9]. Recent editions of some control textbooks make
the reader aware of the possibility of multiple -axis roots (e.g., [1],
[2]); however, to the best of our knowledge, no textbook and/or paper
has provided a simple methodology that gives information about the
number of -axis roots with multiplicity greater than one from the
Routh array without actually solving the auxiliary polynomial. In [8],
a method is provided to count the number of -axis roots of a com-
plex polynomial and their multiplicity. Note that the Routh array of
complex polynomials is quite different from that of real polynomials.
Moreover, the method and the proof which is based on the Sturm the-
orem and Cauchy indices are extremely complicated as compared to
the results presented in this technical note.

In this technical note, a relation is extracted between the number of
zero rows in the Routh array and the multiplicity of symmetric poles,
demonstrating that the stability/instability conclusion can be drawn
from the Routh-Hurwitz criterion even in the cases where the existence
of multiple poles on the -axis is the only source of instability. The
rest of the technical note is organized as follows. In Section II, the de-
tails of the Routh criterion leading to zero rows are given. Then, in
Section III, the main theorems and results of this technical note are
presented including the proofs. Section IV includes numerical exam-
ples to support the theory. Finally, Section V gives the conclusions.

II. THE CAUSE OF APPEARANCE OF ZERO ROWS IN ROUTH ARRAY

Consider a system whose characteristic equation is given by the fol-
lowing monic polynomial:

(1)

If , then we can simply write
and construct the array for . It is clear

that if the system has more than one root at the origin, i.e., ( ,
, ), then the system is unstable and marginal

stability is out of question.
The Routh array corresponding to (1) can be formed as follows

[1]–[4]:
where

(2)

The row corresponding to consists of the coefficients of the fol-
lowing polynomial:

(3)
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Equation (3) demonstrates that a particular row includes only even
or odd terms. To understand the details behind the Routh criterion, let
us rewrite the characteristic (1) in the following form:

(4)

where

(5)

(6)

and correspond to the rows and , repectively.
In fact, the procedure of constructing the Routh array involves suc-

cessive divisions of by [3]:

(7)

Therefore

(8)

where and are the quotient and remainder of the division,
respectively.

The procedure is continued in the following way:

(9)

and

(10)

Thus, if the polynomial is divisible by , the re-
mainder becomes zero, making the row corresponding to

be a zero row. Therefore, we have

(11)

and from (10), we can get

(12)

From (11), we can conclude that the polynomial cannot be
even because of the presence of at the end of all even rows in
the array. Hence, it can be inferred that in the case of , zero rows
can occur only in the odd rows. Since is an even polynomial,
its roots are symmetric with respect to the -axis. Thus, it can only
contain the following types of factors:

(13)

As can be seen from (12), all factors of are also factors of
. To complete the table, one has to replace by ,

the derivative of with respect to .

III. MAIN RESULTS

The following lemmas present the main results of the technical note,
which state the relation between the number and location of zero rows
and the multiplicity of -axis roots, helping us to examine the mar-
ginal stability of the system.

Lemma 1: An LTI system with characteristic polynomial given in
(1) is unstable if there is more than one zero row in its corresponding
Routh array, irrespective of any sign change in the first column.

Proof: on the event of a zero row, its coefficients would be re-
placed by . Now, let be the remainder of the division
of by , and so on. Moreover, based on (12), it is obvious
that is the greatest common divisor (g.c.d.) of the polynomials

and . Similarly, if the next zero row corresponds to
, we can conclude that , which includes only sym-

metric factors, is the g.c.d. of and . Hence, its symmetric
roots are the repeated roots of as well as , because the
common roots of a function and its derivative can be considered the re-
peated roots of that function. The next zero row represents the g.c.d. of

, , and , and so on. Consequently, if zero rows
exist, there is at least one symmetric factor with multiplicity order of

, which can be deduced as the maximum order of multiplicity. No
matter what type this symmetric factor is (see (13)), the system is un-
stable. In other words, type (II) or (III), due to RHP poles, are unstable
themselves, and type (I) is unstable when it is repeated.

Lemma 2: An LTI system with characteristic polynomial given in
(1) is marginally stable if and only if there is merely one zero row in
its Routh array without any sign change in the first column.

Proof: When there is no other zero row after , we can
conclude that and have no common factor and all sym-
metric roots of are simple. In this case, if there is no sign change
in the first column, the system is marginally stable due to some simple
pairs of conjugate poles on the -axis.

Definition.1: Let the distance be the number of rows between
the two consecutive zero rows, i.e., the zero row will occur

rows after the zero row, and be the number of sign changes
between these two zero rows. For the last zero row, let be the number
of rows from the last zero row (inclusive) to the end of the array.

Lemma 3: Consider the characteristic polynomial given in (1), the
corresponding Routh array as completed in Table I, and the definition
above for and . If is reduced with respect to by 2, but

is equal to , we can conclude that there is one pair of conjugate
roots on the -axis with the degree of multiplicity equal to .

Proof: Consider (1), and assume that has several symmetric
roots with different orders of multiplicity as follows:

(14)

where all symmetric poles are shown separately with their multiplicity;
hence, the polynomial does not have any symmetric root.

In (14)

Consider a completed Routh array for given in (1). Let,
be the polynomial constructed from the two adjacent rows of the array,
e.g., . It is known that the Routh array
corresponding to is exactly the same as that of the original array
( ), from the row corresponding to onward [1], [10], [11].
This is also true for the case of a zero row, i.e., when is zero.
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Hence, the sign variations in the first column prior to the first zero row
is due to the existence of RHP roots, the LHP symmetries of which are
not the roots of . In other words, these RHP roots belong to
in (12). Now, let us define as follows:

(15)

(16)

where is the number of the pairs of conjugate poles on -axis, and
and are the number of type (II) and type (III) factors, respectively.
By comparing (15) with (12) and (14), we can conclude that the

second zero row will occur at the row corresponding to .
The number of sign changes between these two zero rows is exactly the
number of RHP roots of . This is due to the fact that the part of
the array from the row of onward is the same as the Routh
array corresponding to (see the discussion above), and that

. Therefore

(17)

From (16) and (17), we have

(18)

and remain constant unless the differentiating operation elim-
inates one of the factors which has a lower degree of multiplicity than
the others. Elimination of a factor of type (I) only reduces by two
units but does not change . Elimination of a factor of type (II) reduces

by two and by one unit, and finally, elimination of a factor of type
(III) reduces by four and by two units. Sometimes, it is difficult
to distinguish between types (II) and (III), because elimination of two
factors of type (II) has a result identical to the elimination of a factor
of type (III). Fortunately, elimination of -axis roots has different re-
sults and is distinguishable from other types. In other words, reduction
of distance without reduction of sign variations after the zero
row means there is a pair of conjugate roots on the -axis with re-
peated order of , which completes the proof.

IV. EXAMPLES

Although these examples do not have practical aspects, they are
provided to exemplify the theorems and the procedure of counting
the number and repeated order of the pairs of conjugate poles on the

-axis.
In the examples given below, the highlighted rows are zero rows

whose coefficients are replaced by the coefficients of the derivatives of
the corresponding auxiliary polynomials.

1) Example 1:

TABLE II
THE ROUTH ARRAY FOR EXAMPLE 1

TABLE III
THE ROUTH ARRAY FOR EXAMPLE 2

Based on Lemma 1, the system corresponding to this array is un-
stable, because it has three zero rows ( ) , despite having no sign
variation in the first column ( ).

The distance between the first two zero rows is 6 rows ( ) ), and
hence , i.e., the characteristic equation has three
pairs of -axis conjugate poles. According to (18), ,
which means that at least one of these three pairs has a multiplicity of
order 3.

The distance between the second and third zero row is 6, which is the
same as the distance between the first and second zero row; however,

, which is reduced by 4. Therefore, based on Lemma 3, there
is two pairs of conjugate poles on the -axis with repeated order of 2
(one unit less than the index of ), i.e., .

Now, by looking at the roots of , which are { , and
} with a multiplicity of order 2, and { } with a multiplicity

of order 3, we can infer that the results of Lemma 1 and Lemma 2 are
verified.

2) Example 2:
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Before the first zero row, there is one sign change and hence one RHP
pole. and , so by using (17), we can conclude that ,
where is the number of -axis poles. , but

; therefore, the power of the type (I) factor is 1. Thus, we only
have one simple pair of conjugate poles on the -axis. The other 12
poles are symmetric with respect to the -axis on the right and left half
planes. By obtaining roots of , and rewriting it in the form of its
factors, we have ,
which verifies our results.

V. CONCLUSION

Stability analysis of LTI systems is the most important problem in
linear control systems for which some methods are introduced in the
textbooks. Routh-Hurwitz criterion is one of these methods, which can
simply give stability/instability conclusion of a system. Although, so
far, it seemed that Routh-Hurwitz criterion can only examine RHP
poles and cannot give any information about multiple poles on the

-axis , which is another source of instability, it is shown in this tech-
nical note that this criterion not only can distinguish this source of in-
stability, but also gives adequate information about symmetric poles
(including -axis poles).

The number of -axis poles and their multiplicity can be calculated
in every case, based on the distances and the number of sign changes
between the zero rows.
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In [1], we showed that a particular class of networked control system
(NCS) with quantization, i.i.d. dropouts and disturbances can be de-
scribed as a Markov jump linear system of the form

(1)

where

and is a Bernoulli dropout process, with

Throughout [1] we showed that properties of the NCS can be conve-
niently stated in terms of the expected system matrices

and the matrix . Unfortunately, Theorem 4 in [1, Sec-
tion V-A] is incorrect. For white disturbances , the statement
should be as given below. Non-white can be accommodated
by using standard state augmentation techniques; see, e.g., [2].

Theorem 4: Suppose that (1) is MSS and AWSS and that
is white with . Define

(2)
where (see [1, Sec.2] for definitions)

(3)

Manuscript received April 23, 2012; revised June 26, 2012 and September
24, 2012; accepted December 09, 2012. Date of publication January 21, 2013;
date of current version June 19, 2013. The work of E. I. Silva was supported by
CONICYT through Grants Anillo ACT53 and Fondecyt 1110646. This work
was supported in part by the Australian Research Council’s Discovery Projects
funding scheme (project DP0988601) and by the Danish Research Council for
Technology and Production Sciences under Grant 274-07-0383. Recommended
by Associate Editor P. Shi.

D. E. Quevedo is with the School of Electrical Engineering and Computer
Science, The University of Newcastle, Callaghan, Newcastle (NSW) 2308, Aus-
tralia (e-mail: dquevedo@ieee.org).

J. Østergaard is with the Department of Electronic Systems, Aalborg Univer-
sity, 9220 Aalborg, Denmark (e-mail: janoe@ieee.org).

E. I. Silva is with the Departamento de Electrónica, Universidad Técnica Fed-
erico Santa María, 2390123 Valparaíso, Chile (e-mail: eduardo.silva@usm.cl).

D. Nešić is with the Department of Electrical and Electronic Engineering,
The University of Melbourne, Carlton, Parkville, Victoria (VIC) 3010, Australia
(e-mail: dnesic@unimelb.edu.au).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2013.2241481

0018-9286/$31.00 © 2013 IEEE


